Order Theoretical Semantic Recommendation
نویسندگان
چکیده
Mathematical concepts of order and ordering relations play multiple roles in semantic technologies. Discrete totally ordered data characterize both input streams and top-k rank-ordered recommendations and query output, while temporal attributes establish numerical total orders, either over time points or in the more complex case of startend temporal intervals. But also of note are the fully partially ordered data, including both lattices and non-lattices, which actually dominate the semantic strcuture of ontological systems. Scalar semantic similarities over partially-ordered semantic data are traditionally used to return rank-ordered recommendations, but these require complementation with true metrics available over partially ordered sets. In this paper we report on our work in the foundations of order measurement in ontologies, with application to top-k semantic recommendation in workflows. We conclude that true ordered set metrics are strongly preferable to traditional semantic similarities.
منابع مشابه
Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملAutomatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملModeling a semantic recommender system for medical prescriptions and drug interaction detection
Introduction: The administration of appropriate drugs to patients is one of the most important processes of treatment and requires careful decision-making based-on the current conditions of the patient and its history and symptoms. In many cases, patients may require more than one drug, or in addition to having a previous illness and receiving the drug, they need new drugs for the new illness, ...
متن کاملAHP Techniques for Trust Evaluation in Semantic Web
The increasing reliance on information gathered from the web and other internet technologies raise the issue of trust. Through the development of semantic Web, One major difficulty is that, by its very nature, the semantic web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give each resource. Each user knows the trustworthiness of ...
متن کاملTaking Advantage of Semantics in Recommendation Systems
Recommendation systems leverage product and community information to target products to consumers. Researchers have developed collaborative recommendation systems, content-based recommendation systems and a few hybrid systems. We propose a semantic framework to overcome common limitations of current systems. We present a system whose representations of items and user-profiles are based on conce...
متن کامل